Example 1 (Empty max_{\succeq}). Consider $X = \mathbb{R}$ and \succeq is more is better and Y = (0, 1).

$$\max_{\succeq} Y = \emptyset$$

Example 2 (Transitivity, quasi-transitivity, Acyclicity). We give two examples. First example satisfies quasi-transitivity but fails to transitivity, second example satisfies acyclicity but fails to quasi-transitivity.

- (i) consider $X = \mathbb{R}$ and \succeq_1 such that for $x, y \in \mathbb{R}, x \succeq_1 y \iff x \ge y+1$. \succeq_1 satisfies quasi-transitivity but not transitive;
- (ii) consider $X = \{x_1, x_2, x_3\}$ and $\succeq_2 = \{(x_1, x_2), (x_2, x_3)\}.$

Example 3 (Some remark). Notice that for acyclicity, "not $x_n \succ x_1$ " does not imply that $x_1 \succeq x_n$, the reason is \succeq may not be complete.

Example 4 (Satisfying contraction but violating expansion). Let $X = \{a, b, c\}$ and consider the following choice function.

$$\begin{array}{ccc} Y & C(Y) \\ \hline ab & ab \\ bc & bc \\ ac & ac \\ abc & a \end{array}$$

This choice function violates expansion, because $b \in C(\{a, b\})$ and $b \in C(\{b, c\})$, however $b \notin C(\{a, b, c\})$.

Example 5 (Satisfying strong expansion but violating contraction). Let $X = \{a, b, c\}$ and consider the following choice function.

$$\begin{array}{ccc} Y & C(Y) \\ \hline ab & a \\ bc & b \\ ac & c \\ abc & abc \\ \end{array}$$

This choice function violates contraction, because $a \in C(\{a, b, c\})$ however, $a \notin C(\{a, c\})$.

Example 6. The notion of WARP is equivalent to the following condition: for all $Y, Z \in \mathcal{M}(X)$ and $x, y \in Y \cap Z$,

$$x \in C(Y)$$
 and $y \in C(Z)$ implies $x \in C(Z)$.

Proof. Proof breaks into two parts.

- (i) " \rightarrow ": as $(Y \cap Z) \subset Y$ and $\{x\} \subset (C(Y) \cap (Y \cap Z))$, hence WARP implies $C(Y \cap Z) = C(Y) \cap (Y \cap Z)$. We can conclude: $x \in C(Y \cap Z)$. Applying $Y \cap Z$ and Z with WARP, we finally get: $C(Y \cap Z) = C(Z) \cap (Y \cup Z)$. Hence, $x \in C(Z)$.
- (ii) " \leftarrow ": let $Z \subset Y$ and $C(Y) \cap Z \neq \emptyset$.
 - (i) $\forall x \in C(Z)$, we have: $x \in Z = Z \cap Y$, therefore $x \in C(Y)$, which implies $C(Z) \subset C(Y) \cap Z$;
 - (ii) $\forall x \in C(Y) \cap Z$, we have: $x \in Z \cap Y$ and $x \in C(Y)$, therefore $x \in C(Z)$, which implies $C(Y) \cap Z \subset C(Z)$.

Therefore, $C(Y) \cap Z = C(Z)$.

Example 7 (Rationalizable but not by quasi-transitive relation). We construct a relation that is rationalizable but not by a quasi-transitive relation.

$$\begin{array}{ccc} Y & C(Y) \\ \hline ab & b \\ ac & ac \\ bc & c \\ abc & c \\ \end{array}$$

Therefore, $b \succ_C a$ and $a \sim_C c$ and $c \succ_C b$, which clearly violates quasitransitivity.

Example 8 (Some observations). We have the following two observations.

- (i) every preference is semi-order;
- (ii) semi-order is quasi-transitive, however not every quasi-transitive relation is semi-order.

Following two examples illustrating the converse of observations above.

- (i) not every semi-order is preference. Consider $X = \{x, y, z\}$ and $x \sim y \sim z$ and $x \succ z$. It's semi-order but not a preference.
- (ii) not every quasi-transitive preference is semi-order. Consider $X = \{x, y, z, w\}$ with $x \succ y$ and $z \succ w$ and indifference otherwise. Clearly, it's quasi-transitive but not semi-order.

Example 9 (Independence of vNM3). lexicographic preferences. Let $A = \{a_1, a_2, \ldots, a_n\}$ and define \succeq on $\mathcal{L}(A)$ as following:

- (i) $p \sim p$ for all $p \in \mathcal{L}(A)$;
- (ii) $p \succ q$ if and only if there exists $k \in [n]$ so that $p(a_i) = q(a_i)$ for all i < k and $p(a_k) > q(a_k)$.

Consider the following three lotteries: $p_1 = (\frac{2}{3}, \frac{1}{6}, ...) \succ p_2 = (\frac{1}{3}, \frac{1}{2}, ...) \succ p_3 = (\frac{1}{3}, \frac{1}{3}, ...)$. However any convex combination of p_1 and p_3 is strictly preferred to p_2 .

Example 10 (Independence of F3). We present an example violating De Finetti's axiom 3 but remaining satisfying other axioms. Let $S = \{s_1, \ldots, s_n\}$ for some $n \in \mathcal{N}$. Define \succeq by letting, $f \sim g$ if and only if f = g and $f \succ g$ if and only if there is a $k \in [n]$ such that $f(s_i) = g(s_i)$ for all i < k and $f(s_k) > g(s_k)$. Let's consider for the case when n = 2 and f = (1, 1). Then, $U_{\succeq}(f) = \{(x, y) : x > 1 \text{ or } x = 1, y \geq 1\}$ which is not open.

Figure 1: $U_{\succeq}(f)$