
Example 1 (Empty max%). Consider X = R and % is more is better and
Y = (0, 1).

max
%

Y = ∅.

Example 2 (Transitivity, quasi-transitivity, Acyclicity). We give two exam-
ples. First example satisfies quasi-transitivity but fails to transitivity, second
example satisfies acyclicity but fails to quasi-transitivity.

(i) consider X = R and %1 such that for x, y ∈ R, x %1 y ⇐⇒ x ≥ y+1.
%1 satisfies quasi-transitivity but not transitive;

(ii) consider X = {x1, x2, x3} and %2= {(x1, x2), (x2, x3)}.

Example 3 (Some remark). Notice that for acyclicity, “not xn � x1” does
not imply that x1 % xn, the reason is % may not be complete.

Example 4 (Satisfying contraction but violating expansion). Let X = {a, b, c}
and consider the following choice function.

Y C(Y )
ab ab
bc bc
ac ac
abc a

This choice function violates expansion, because b ∈ C({a, b}) and b ∈
C({b, c}), however b /∈ C({a, b, c}).

Example 5 (Satisfying strong expansion but violating contraction). Let
X = {a, b, c} and consider the following choice function.

Y C(Y )
ab a
bc b
ac c
abc abc

This choice function violates contraction, because a ∈ C({a, b, c}) however,
a /∈ C({a, c}).

Example 6. The notion of WARP is equivalent to the following condition:
for all Y, Z ∈M(X) and x, y ∈ Y ∩ Z,

x ∈ C(Y ) and y ∈ C(Z) implies x ∈ C(Z).
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Proof. Proof breaks into two parts.

(i) “→”: as (Y ∩Z) ⊂ Y and {x} ⊂
(
C(Y )∩(Y ∩Z)

)
, hence WARP implies

C(Y ∩Z) = C(Y )∩(Y ∩Z). We can conclude: x ∈ C(Y ∩Z). Applying
Y ∩Z and Z with WARP, we finally get: C(Y ∩Z) = C(Z)∩ (Y ∪Z).
Hence, x ∈ C(Z).

(ii) “←”: let Z ⊂ Y and C(Y ) ∩ Z 6= ∅.

(i) ∀x ∈ C(Z), we have: x ∈ Z = Z ∩ Y , therefore x ∈ C(Y ), which
implies C(Z) ⊂ C(Y ) ∩ Z;

(ii) ∀x ∈ C(Y ) ∩ Z, we have: x ∈ Z ∩ Y and x ∈ C(Y ), therefore
x ∈ C(Z), which implies C(Y ) ∩ Z ⊂ C(Z).

Therefore, C(Y ) ∩ Z = C(Z).

Example 7 (Rationalizable but not by quasi-transitive relation). We con-
struct a relation that is rationalizable but not by a quasi-transitive relation.

Y C(Y )
ab b
ac ac
bc c
abc c

Therefore, b �C a and a ∼C c and c �C b, which clearly violates quasi-
transitivity.

Example 8 (Some observations). We have the following two observations.

(i) every preference is semi-order;

(ii) semi-order is quasi-transitive, however not every quasi-transitive rela-
tion is semi-order.

Following two examples illustrating the converse of observations above.

(i) not every semi-order is preference. Consider X = {x, y, z} and x ∼
y ∼ z and x � z. It’s semi-order but not a preference.

(ii) not every quasi-transitive preference is semi-order. Consider X =
{x, y, z, w} with x � y and z � w and indifference otherwise. Clearly,
it’s quasi-transitive but not semi-order.
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Example 9 (Independence of vNM3). lexicographic preferences. Let A =
{a1, a2, . . . , an} and define % on L(A) as following:

(i) p ∼ p for all p ∈ L(A);

(ii) p � q if and only if there exists k ∈ [n] so that p(ai) = q(ai) for all
i < k and p(ak) > q(ak).

Consider the following three lotteries: p1 = (2
3
, 1
6
, . . . ) � p2 = (1

3
, 1
2
, . . . ) �

p3 = (1
3
, 1
3
, . . . ). However any convex combination of p1 and p3 is strictly

preferred to p2.

Example 10 (Independence of F3). We present an example violating De
Finetti’s axiom 3 but remaining satisfying other axioms. Let S = {s1, . . . , sn}
for some n ∈ N . Define % by letting, f ∼ g if and only if f = g and f � g
if and only if there is a k ∈ [n] such that f(si) = g(si) for all i < k and
f(sk) > g(sk). Let’s consider for the case when n = 2 and f = (1, 1). Then,
U%(f) = {(x, y) : x > 1 or x = 1, y ≥ 1} which is not open.

f

Figure 1: U%(f)
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