Example 1 (Empty $\max _{\succsim}$). Consider $X=\mathbb{R}$ and \succsim is more is better and $Y=(0,1)$.

$$
\max _{\succsim} Y=\emptyset .
$$

Example 2 (Transitivity, quasi-transitivity, Acyclicity). We give two examples. First example satisfies quasi-transitivity but fails to transitivity, second example satisfies acyclicity but fails to quasi-transitivity.
(i) consider $X=\mathbb{R}$ and \succsim_{1} such that for $x, y \in \mathbb{R}, x \succsim_{1} y \Longleftrightarrow x \geq y+1$. \succsim_{1} satisfies quasi-transitivity but not transitive;
(ii) consider $X=\left\{x_{1}, x_{2}, x_{3}\right\}$ and $\succsim_{2}=\left\{\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right)\right\}$.

Example 3 (Some remark). Notice that for acyclicity, "not $x_{n} \succ x_{1}$ " does not imply that $x_{1} \succsim x_{n}$, the reason is \succsim may not be complete.

Example 4 (Satisfying contraction but violating expansion). Let $X=\{a, b, c\}$ and consider the following choice function.

Y	$C(Y)$
$a b$	$a b$
$b c$	$b c$
$a c$	$a c$
$a b c$	a

This choice function violates expansion, because $b \in C(\{a, b\})$ and $b \in$ $C(\{b, c\})$, however $b \notin C(\{a, b, c\})$.

Example 5 (Satisfying strong expansion but violating contraction). Let $X=\{a, b, c\}$ and consider the following choice function.

$$
\begin{array}{cc}
Y & C(Y) \\
\hline a b & a \\
b c & b \\
a c & c \\
a b c & a b c
\end{array}
$$

This choice function violates contraction, because $a \in C(\{a, b, c\})$ however, $a \notin C(\{a, c\})$.

Example 6. The notion of WARP is equivalent to the following condition: for all $Y, Z \in \mathcal{M}(X)$ and $x, y \in Y \cap Z$,

$$
x \in C(Y) \text { and } y \in C(Z) \text { implies } x \in C(Z) .
$$

Proof. Proof breaks into two parts.
(i) " \rightarrow ": as $(Y \cap Z) \subset Y$ and $\{x\} \subset(C(Y) \cap(Y \cap Z))$, hence WARP implies $C(Y \cap Z)=C(Y) \cap(Y \cap Z)$. We can conclude: $x \in C(Y \cap Z)$. Applying $Y \cap Z$ and Z with WARP, we finally get: $C(Y \cap Z)=C(Z) \cap(Y \cup Z)$. Hence, $x \in C(Z)$.
(ii) " \leftarrow ": let $Z \subset Y$ and $C(Y) \cap Z \neq \emptyset$.
(i) $\forall x \in C(Z)$, we have: $x \in Z=Z \cap Y$, therefore $x \in C(Y)$, which implies $C(Z) \subset C(Y) \cap Z$;
(ii) $\forall x \in C(Y) \cap Z$, we have: $x \in Z \cap Y$ and $x \in C(Y)$, therefore $x \in C(Z)$, which implies $C(Y) \cap Z \subset C(Z)$.

Therefore, $C(Y) \cap Z=C(Z)$.

Example 7 (Rationalizable but not by quasi-transitive relation). We construct a relation that is rationalizable but not by a quasi-transitive relation.

Y	$C(Y)$
$a b$	b
$a c$	$a c$
$b c$	c
$a b c$	c

Therefore, $b \succ_{C} a$ and $a \sim_{C} c$ and $c \succ_{C} b$, which clearly violates quasitransitivity.

Example 8 (Some observations). We have the following two observations.
(i) every preference is semi-order;
(ii) semi-order is quasi-transitive, however not every quasi-transitive relation is semi-order.

Following two examples illustrating the converse of observations above.
(i) not every semi-order is preference. Consider $X=\{x, y, z\}$ and $x \sim$ $y \sim z$ and $x \succ z$. It's semi-order but not a preference.
(ii) not every quasi-transitive preference is semi-order. Consider $X=$ $\{x, y, z, w\}$ with $x \succ y$ and $z \succ w$ and indifference otherwise. Clearly, it's quasi-transitive but not semi-order.

Example 9 (Independence of vNM3). lexicographic preferences. Let $A=$ $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and define \succsim on $\mathcal{L}(A)$ as following:
(i) $p \sim p$ for all $p \in \mathcal{L}(A)$;
(ii) $p \succ q$ if and only if there exists $k \in[n]$ so that $p\left(a_{i}\right)=q\left(a_{i}\right)$ for all $i<k$ and $p\left(a_{k}\right)>q\left(a_{k}\right)$.

Consider the following three lotteries: $p_{1}=\left(\frac{2}{3}, \frac{1}{6}, \ldots\right) \succ p_{2}=\left(\frac{1}{3}, \frac{1}{2}, \ldots\right) \succ$ $p_{3}=\left(\frac{1}{3}, \frac{1}{3}, \ldots\right)$. However any convex combination of p_{1} and p_{3} is strictly preferred to p_{2}.

Example 10 (Independence of F3). We present an example violating De Finetti's axiom 3 but remaining satisfying other axioms. Let $S=\left\{s_{1}, \ldots, s_{n}\right\}$ for some $n \in \mathcal{N}$. Define \succsim by letting, $f \sim g$ if and only if $f=g$ and $f \succ g$ if and only if there is a $k \in[n]$ such that $f\left(s_{i}\right)=g\left(s_{i}\right)$ for all $i<k$ and $f\left(s_{k}\right)>g\left(s_{k}\right)$. Let's consider for the case when $n=2$ and $f=(1,1)$. Then, $U_{\succsim}(f)=\{(x, y): x>1$ or $x=1, y \geq 1\}$ which is not open.

Figure 1: $U_{\succsim}(f)$

