
Example 1 (CES utility function). The constant elasticity of substitute
utility function has form of,

U(x) = (
n∑

i=1

xρ
i )

1
ρ .

The constant elasticity is indeed: 1
1−ρ

, before we proceed to proof notice that

MRSji =

1
ρ
(

n∑
i=1

xρ
i )

1−ρ
ρ ρxρ−1

j

1
ρ
(

n∑
i=1

xρ
i )

1−ρ
ρ ρxρ−1

i

= (
xj

xi

)ρ−1

Hence,

Eij =
∂ln( xi

xj
)

∂ln(MRSji)

=
∂ln( xi

xj
)

∂ln[( xi

xj
)1−ρ]

=
1

1− ρ
.

Example 2 (CES production function). The CES production function is
given by,

f(x) = A(
n∑

i=1

λix
ρ
i )

k
ρ .

More often, we focus on f(x) = (
n∑

i=1

aix
γ
i )

1
γ with

n∑
i=1

ai = 1 and this form has

following three “transformations” according to different cases of γs.

(i) lim
r→1

(
n∑

i=1

aix
γ
i )

1
γ =

n∑
i=1

aixi: this is obvious;

(ii) lim
r→0

(
n∑

i=1

aix
γ
i )

1
γ =

n∏
i=1

xai
i :

Proof.

lim
r→0

(
n∑

i=1

aix
γ
i )

1
γ = lim

r→0
e

1
γ
ln(

n∑
i=1

aix
γ
i )
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Notice that L’Hôpital’s Rule implies,

lim
r→0

ln(
n∑

i=1

aix
γ
i )

γ
→

e

n∑
i=1

ailn(xi)
=

n∏
i=1

xai
i .

Example 3 (Shadow price). Lagrange multipliers is interpreted as the change
in the objective function by relaxing the constraint by one unit, in economics
that change can be seen as a value or ”shadow price”. We shall prove this.

The formal idea is below: say, you are facing the following constrained
optimization problem:

{
max
(x,y)

f(x, y)

s.t. g(x, y) = c
−→


x∗ = x∗(c)

y∗ = y∗(c)

λ∗ = λ∗(c)

We briefly sketch the process of Lagrangian method:

(i) Construct the Lagrangian equation: L(x, y, λ) = f(x, y)+λ(c−g(x, y))

(ii) Take the derivative with regard to x, y, λ, then we get the first order
condition:

∂L(x∗, y∗, λ∗)

∂x
=

∂f(x∗, y∗)

∂x
− λ∗∂g(x

∗, y∗)

∂x
= 0

∂L(x∗, y∗, λ∗)

∂y
=

∂f(x∗, y∗)

∂y
− λ∗∂g(x

∗, y∗)

∂y
= 0

∂L(x∗, y∗, λ∗)

∂λ
= c− g(x∗, y∗) = 0

(iii) Solve this system equations and get the results.

Now, you may wonder if we increase c by one unit, how much would
f(x∗, y∗) increase? The answer is: λ∗, that’s why Lagrange multipliers are
called shadow prices, i.e., the change in the objective function by relaxing
the constraint by one unit. Let’s prove it.
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Proof. Writing the value function as: F (c) = f(x∗(c), y∗(c)), now take deriva-
tive with respect to c:

dF (c)

dc
=

∂f(x∗(c), y∗(c))

∂x
· dx

∗(c)

dc
+

∂f(x∗(c), y∗(c))

∂y
· dy

∗(c)

dc

= λ∗(c) · ∂g(x
∗, y∗)

∂x︸ ︷︷ ︸
FOC

·dx
∗(c)

dc
+ λ∗(c) · ∂g(x

∗, y∗)

∂y︸ ︷︷ ︸
FOC

·dy
∗(c)

dc

= λ∗(c) · (∂g(x
∗, y∗)

∂x
· dx

∗(c)

dc
+

∂g(x∗, y∗)

∂y
· dy

∗(c)

dc
)︸ ︷︷ ︸

Take differential with c: g(x,y)=c =⇒ 1

= λ∗(c)

Analogize to the utility maximizing problem, the interpretation of Lagrange
multiplier is: when you have one unit more wealth, then your total utility
would increase by λ∗.

Example 4 (Binary relation as a subset of Cartesian product). Consider
outcome set X = {a, b, c}, we can define a binary relation

%= {(a, a), (b, b), (c, c), (a, b), (b, a), (a, c), (b, c)}.

Example 5 (Continuous preference with discontinuous utility function). A
continuous preference can be represented by a discontinuous utility function.
Consider X = R and % is “more is better”. Clearly % is continuous, however
it can be represented as

U(x) =

{
x, if x ≤ 0,

x+ 1, if x > 0.

Example 6 (Implication of local-nonsatiation preference). Consider two
bundles xj and xk. xj = (xj

1, x
j
2, . . . , x

j
n) and xk = (xk

1, x
k
2, . . . , x

k
n) ∈ Rn

+.
Bundle xj satisfies this: when facing price vector pj = (pj1, p

j
2, . . . , p

j
n), the

consumer chooses xj. Bundle xk is affordable under pj, i.e., pjxk < pjxj.
Claim: If the decision maker’s choices can be rationalized by a complete

locally non-satiated preference relation, then it must be the case that xj � xk.

Proof. We will prove it by contradiction. Assume: xk % xj and consider

ε =
pjxj − pjxk

n∑
i=1

pji

.
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=⇒
n∑

i=1

pjiyi <

n∑
i=1

pji (x
k
i + ε), ∀y ∈ Bε(xk)

=⇒
n∑

i=1

pjiyi <

n∑
i=1

pjix
k
i + ε

n∑
i=1

pji

=⇒
n∑

i=1

pjiyi <
n∑

i=1

pjix
k
i +

pjxj − pjxk

n∑
i=1

pji

n∑
i=1

pji

=⇒ pjy < pjxj

This means that you find a ball around xk, such that at price pj, every
y ∈ Bε(x

k) is affordable.
By non-satiation assumption, ∃y′ ∈ Bε(x

k), such that y′ � xk % xj. This
leads to the contradiction that % rationalized choices, since at price pj bundle
xj is optimal for decision maker.

Example 7 (Convex preference may not have concave utility representa-
tion). Let’s consider the preference on R such that x % y if x ≥ y or y < 0.
This preference is convex but does not have concave utility representation.

Proof. First we prove it’s convex then we show it does not have concave
utility function.

(i) The preference is convex: we want to show AsGoodAs(y) = {z|z % y}
for any y in R is convex. y has the following two cases.

(i) y ≥ 0: ∀x, z % y and α ∈ (0, 1), we have αx+ (1− α)z ≥ y. This
implies αx+ (1− α)z % y =⇒ (αx+ (1− α)z) ∈ AsGoodAs(y).

(ii) y < 0. Then x, z have the following three cases.
(i) x, z ≥ 0: αx+(1−α)z ≥ 0 > y. This implies (αx+(1−α)z) ∈

AsgoodAs(y)

(ii) x ≥ 0 and z < 0: αx + (1 − α)z is either ≥ 0 or < 0, both
cases imply αx+ (1− α)z ∈ AsGoodAs(y).

(iii) x < 0 and z < 0: αx+(1−α)z ∼ y, therefore αx+(1−α)z ∈
AsGoodAs(y).

(ii) The utility representation is not concave: {x < 0} is mapped into a
flat line and {x ≥ 0} is mapped into an increasing function, therefore
it can not be concave.
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Example 8 (Monotonic preference does not imply non-giffen good). Con-
sider the following utility function with two commodities:

u(x) = min{u1(x), u2(x)}, where u1(x) = x1 + 10, u2(x) = 2(x1 + x2)

Now consider the following case, consumer’s income is m = 60, p1 = 12
and p2 changes from 9 to 4. This graph shows that when price of good 2

x2

x1

Figure 1: Good 2 is Giffen good

decreases, however, consumer’s demand for good 2 decreases as well! Mean-
while, consumer’s preferences are monotonic!

Example 9 (Turtle traveling). Consider the following two sentences:

(i) The maximal distance a turtle can travel in 2 days is 7 km.

(ii) The minimal time it takes a turtle to travel 7 km is 2 days.

under which conditions are these two sentences equivalent?

(i) For 1 implies 2: we need monotonicity of distance-day function. For
example, consider the following distance-day function: a turtle can
travel 7 km in 1 day but after 1 day it has to rest. Then, this distance-
day function is not monotonic and it does not imply 2.

(ii) For 2 implies 1: we need continuity of distance-day function. For ex-
ample, consider a turtle can jump at t = 2 from d = 7 to d = 9, then
1 fails.

Refer to figure ?? for descriptive result.
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Figure 2: Non-duality: example

Example 10 (Nonsatiated but not monotonic preference). The preference
represented by u(x) =

√∑
(xk − x∗

k)
2 is non-satiated but not monotonic.

Proof. we want to prove ∀ε > 0, we can find an x′ ∈ Ballε(x), such that
x′ � x.

Recall the definition of �, if I want to find an x′ ∈ Ballε(x), such that
x′ � x, I need to show there is one point x′ ∈ Ballε(x), and d(x, x∗) >
d(x′, x∗). Just imagining in your mind, such x′ must exist, because any point
x′ in Ballε(x) and also it lies on the vector x∗−x, then it will have the strict
smaller distance with x∗ than x.

Based on the above imagination, I construct the x′ like this. (x∗
1−x1, x

∗
2−

x2, . . . , x
∗
k − xk) forms the vector from x∗ to x, and I divided the norm of

this vector to standardize it.
We construct an x′ ∈ RK

+ like this:

x′ = (x1 +
x∗
1 − x1

d(x∗, x)
· ε
2
, x2 +

x∗
2 − x2

d(x∗, x)
· ε
2
, . . . , xk +

x∗
k − xk

d(x∗, x)
· ε
2
)

d(a, b) is the Euclidean distance between points a and b.
Without loss of generality, we assume

ε < d(x∗, x)1 (1)

Our proof begins in two steps.
Step1: Prove x′ � x.

1Because, any point x′ ∈ Ballε(x), x
′ � x, also belongs to Ballε′(x), where ε′ > d(x∗, x)
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Combining with the utility function, this requires us to prove d(x∗, x′) <
d(x∗, x), let’s write down the expression of d2(x∗, x′):

d2(x∗, x′) =
k∑

i=1

(xi +
x∗
i − xi

d(x∗, x)
· ε
2
− x∗

i )
2

=
k∑

i=1

(xi − x∗
i )

2

︸ ︷︷ ︸
=d2(x∗,x)

+
k∑

i=1

(
x∗
i − xi

d(x∗, x)
· ε
2
)2 −

k∑
i=1

(xi − x∗
i )(xi − x∗

i )

d(x∗, x)
· ε︸ ︷︷ ︸

=A

−→ A =
k∑

i=1

(
x∗
i − xi

d(x∗, x)
· ε
2
)2 −

k∑
i=1

(xi − x∗
i )(xi − x∗

i )

d(x∗, x)
· ε

−→ A =
ε2

4
− d(x∗, x) · ε < ε2

4
− ε2 < 0

This completes our proof for step 1.
Step2: Prove x′ ∈ Ballε(x)
This proof is trivial. Writing down the distance of x′ and x, we will get

the result.
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