Example 1 (CES utility function). The constant elasticity of substitute utility function has form of,

$$U(x) = (\sum_{i=1}^{n} x_i^{\rho})^{\frac{1}{\rho}}.$$

The constant elasticity is indeed: $\frac{1}{1-\rho}$, before we proceed to proof notice that

$$MRS_{ji} = \frac{\frac{1}{\rho} (\sum_{i=1}^{n} x_i^{\rho})^{\frac{1-\rho}{\rho}} \rho x_j^{\rho-1}}{\frac{1}{\rho} (\sum_{i=1}^{n} x_i^{\rho})^{\frac{1-\rho}{\rho}} \rho x_i^{\rho-1}} = (\frac{x_j}{x_i})^{\rho-1}$$

Hence,

$$E_{ij} = \frac{\partial ln(\frac{x_i}{x_j})}{\partial ln(MRS_{ji})}$$
$$= \frac{\partial ln(\frac{x_i}{x_j})}{\partial ln[(\frac{x_i}{x_j})^{1-\rho}]}$$
$$= \frac{1}{1-\rho}.$$

Example 2 (CES production function). The CES production function is given by,

$$f(x) = A(\sum_{i=1}^{n} \lambda_i x_i^{\rho})^{\frac{k}{\rho}}.$$

More often, we focus on $f(x) = (\sum_{i=1}^{n} a_i x_i^{\gamma})^{\frac{1}{\gamma}}$ with $\sum_{i=1}^{n} a_i = 1$ and this form has following three "transformations" according to different cases of γs .

(i) $\lim_{r \to 1} \left(\sum_{i=1}^n a_i x_i^{\gamma}\right)^{\frac{1}{\gamma}} = \sum_{i=1}^n a_i x_i$: this is obvious;

(ii)
$$\lim_{r \to 0} (\sum_{i=1}^{n} a_i x_i^{\gamma})^{\frac{1}{\gamma}} = \prod_{i=1}^{n} x_i^{a_i}$$
:

Proof.

$$\lim_{r \to 0} (\sum_{i=1}^{n} a_{i} x_{i}^{\gamma})^{\frac{1}{\gamma}} = \lim_{r \to 0} e^{\frac{1}{\gamma} ln(\sum_{i=1}^{n} a_{i} x_{i}^{\gamma})}$$

Notice that L'Hôpital's Rule implies,

$$\lim_{r \to 0} \frac{\ln(\sum_{i=1}^{n} a_i x_i^{\gamma})}{\gamma} \to$$
$$e^{\sum_{i=1}^{n} a_i \ln(x_i)} = \prod_{i=1}^{n} x_i^{a_i}.$$

Example 3 (Shadow price). Lagrange multipliers is interpreted as the change in the objective function by relaxing the constraint by one unit, in economics that change can be seen as a value or "shadow price". We shall prove this.

The formal idea is below: say, you are facing the following constrained optimization problem:

$$\begin{cases} \max_{(x,y)} & f(x,y) \\ \text{s.t.} & g(x,y) = c \end{cases} \longrightarrow \begin{cases} x^* & = x^*(c) \\ y^* & = y^*(c) \\ \lambda^* & = \lambda^*(c) \end{cases}$$

We briefly sketch the process of Lagrangian method:

- (i) Construct the Lagrangian equation: $\mathcal{L}(x, y, \lambda) = f(x, y) + \lambda(c g(x, y))$
- (ii) Take the derivative with regard to x, y, λ , then we get the first order condition:

$$\frac{\partial \mathcal{L}(x^*, y^*, \lambda^*)}{\partial x} = \frac{\partial f(x^*, y^*)}{\partial x} - \lambda^* \frac{\partial g(x^*, y^*)}{\partial x} = 0$$
$$\frac{\partial \mathcal{L}(x^*, y^*, \lambda^*)}{\partial y} = \frac{\partial f(x^*, y^*)}{\partial y} - \lambda^* \frac{\partial g(x^*, y^*)}{\partial y} = 0$$
$$\frac{\partial \mathcal{L}(x^*, y^*, \lambda^*)}{\partial \lambda} = c - g(x^*, y^*) = 0$$

(iii) Solve this system equations and get the results.

Now, you may wonder if we increase c by one unit, how much would $f(x^*, y^*)$ increase? The answer is: λ^* , that's why Lagrange multipliers are called *shadow prices*, i.e., the change in the objective function by relaxing the constraint by one unit. Let's prove it.

Proof. Writing the value function as: $F(c) = f(x^*(c), y^*(c))$, now take derivative with respect to c:

$$\frac{dF(c)}{dc} = \frac{\partial f(x^*(c), y^*(c))}{\partial x} \cdot \frac{dx^*(c)}{dc} + \frac{\partial f(x^*(c), y^*(c))}{\partial y} \cdot \frac{dy^*(c)}{dc}$$
$$= \underbrace{\lambda^*(c) \cdot \frac{\partial g(x^*, y^*)}{\partial x} \cdot \frac{dx^*(c)}{dc}}_{FOC} + \underbrace{\lambda^*(c) \cdot \frac{\partial g(x^*, y^*)}{\partial y} \cdot \frac{dy^*(c)}{dc}}_{FOC}$$
$$= \lambda^*(c) \cdot \underbrace{\left(\frac{\partial g(x^*, y^*)}{\partial x} \cdot \frac{dx^*(c)}{dc} + \frac{\partial g(x^*, y^*)}{\partial y} \cdot \frac{dy^*(c)}{dc}\right)}_{\text{Take differential with } c: \ g(x,y)=c \implies 1}$$
$$= \lambda^*(c)$$

Analogize to the utility maximizing problem, the interpretation of Lagrange multiplier is: when you have one unit more wealth, then your total utility would increase by λ^* .

Example 4 (Binary relation as a subset of Cartesian product). Consider outcome set $X = \{a, b, c\}$, we can define a binary relation

$$\succeq = \{(a, a), (b, b), (c, c), (a, b), (b, a), (a, c), (b, c)\}$$

Example 5 (Continuous preference with discontinuous utility function). A continuous preference can be represented by a discontinuous utility function. Consider $X = \mathbb{R}$ and \succeq is "more is better". Clearly \succeq is continuous, however it can be represented as

$$U(x) = \begin{cases} x, & \text{if } x \le 0, \\ x+1, & \text{if } x > 0. \end{cases}$$

Example 6 (Implication of local-nonsatiation preference). Consider two bundles x^j and x^k . $x^j = (x_1^j, x_2^j, \ldots, x_n^j)$ and $x^k = (x_1^k, x_2^k, \ldots, x_n^k) \in \mathbb{R}_+^n$. Bundle x^j satisfies this: when facing price vector $p^j = (p_1^j, p_2^j, \ldots, p_n^j)$, the consumer chooses x^j . Bundle x^k is affordable under p^j , i.e., $p^j x^k < p^j x^j$.

Claim: If the decision maker's choices can be rationalized by a complete locally non-satiated preference relation, then it must be the case that $x^j \succ x^k$.

Proof. We will prove it by contradiction. Assume: $x^k \succeq x^j$ and consider

$$\varepsilon = \frac{p^j x^j - p^j x^k}{\sum\limits_{i=1}^n p_i^j}.$$

$$\implies \sum_{i=1}^{n} p_i^j y_i < \sum_{i=1}^{n} p_i^j (x_i^k + \varepsilon), \ \forall y \in B_{\varepsilon}(x_k)$$
$$\implies \sum_{i=1}^{n} p_i^j y_i < \sum_{i=1}^{n} p_i^j x_i^k + \varepsilon \sum_{i=1}^{n} p_i^j$$
$$\implies \sum_{i=1}^{n} p_i^j y_i < \sum_{i=1}^{n} p_i^j x_i^k + \frac{p^j x^j - p^j x^k}{\sum_{i=1}^{n} p_i^j} \sum_{i=1}^{n} p_i^j$$
$$\implies p^j y < p^j x^j$$

This means that you find a ball around x^k , such that at price p^j , every $y \in B_{\varepsilon}(x^k)$ is affordable.

By non-satiation assumption, $\exists y' \in B_{\varepsilon}(x^k)$, such that $y' \succ x^k \succeq x^j$. This leads to the contradiction that \succeq rationalized choices, since at price p^j bundle x^j is optimal for decision maker.

Example 7 (Convex preference may not have concave utility representation). Let's consider the preference on \mathbb{R} such that $x \succeq y$ if $x \ge y$ or y < 0. This preference is convex but does not have concave utility representation.

Proof. First we prove it's convex then we show it does not have concave utility function.

- (i) The preference is convex: we want to show $AsGoodAs(y) = \{z | z \succeq y\}$ for any y in \mathbb{R} is convex. y has the following two cases.
 - (i) $y \ge 0$: $\forall x, z \succeq y$ and $\alpha \in (0, 1)$, we have $\alpha x + (1 \alpha)z \ge y$. This implies $\alpha x + (1 \alpha)z \succeq y \implies (\alpha x + (1 \alpha)z) \in AsGoodAs(y)$.
 - (ii) y < 0. Then x, z have the following three cases.
 - (i) $x, z \ge 0$: $\alpha x + (1-\alpha)z \ge 0 > y$. This implies $(\alpha x + (1-\alpha)z) \in AsgoodAs(y)$
 - (ii) $x \ge 0$ and z < 0: $\alpha x + (1 \alpha)z$ is either ≥ 0 or < 0, both cases imply $\alpha x + (1 \alpha)z \in AsGoodAs(y)$.
 - (iii) x < 0 and z < 0: $\alpha x + (1 \alpha)z \sim y$, therefore $\alpha x + (1 \alpha)z \in AsGoodAs(y)$.
- (ii) The utility representation is not concave: $\{x < 0\}$ is mapped into a flat line and $\{x \ge 0\}$ is mapped into an increasing function, therefore it can not be concave.

Example 8 (Monotonic preference does not imply non-giffen good). Consider the following utility function with two commodities:

 $u(x) = \min\{u_1(x), u_2(x)\}, \text{ where } u_1(x) = x_1 + 10, \ u_2(x) = 2(x_1 + x_2)$

Now consider the following case, consumer's income is m = 60, $p_1 = 12$ and p_2 changes from 9 to 4. This graph shows that when price of good 2

Figure 1: Good 2 is Giffen good

decreases, however, consumer's demand for good 2 decreases as well! Meanwhile, consumer's preferences are *monotonic*!

Example 9 (Turtle traveling). Consider the following two sentences:

- (i) The maximal distance a turtle can travel in 2 days is 7 km.
- (ii) The minimal time it takes a turtle to travel 7 km is 2 days.

under which conditions are these two sentences equivalent?

- (i) For 1 implies 2: we need monotonicity of distance-day function. For example, consider the following distance-day function: a turtle can travel 7 km in 1 day but after 1 day it has to rest. Then, this distanceday function is not monotonic and it does not imply 2.
- (ii) For 2 implies 1: we need *continuity* of distance-day function. For example, consider a turtle can jump at t = 2 from d = 7 to d = 9, then 1 fails.

Refer to figure ?? for descriptive result.

Figure 2: Non-duality: example

Example 10 (Nonsatiated but not monotonic preference). The preference represented by $u(x) = \sqrt{\sum (x_k - x_k^*)^2}$ is non-satiated but not monotonic.

Proof. we want to prove $\forall \varepsilon > 0$, we can find an $x' \in Ball_{\varepsilon}(x)$, such that $x' \succ x$.

Recall the definition of \succ , if I want to find an $x' \in Ball_{\varepsilon}(x)$, such that $x' \succ x$, I need to show there is one point $x' \in Ball_{\varepsilon}(x)$, and $d(x, x^*) > d(x', x^*)$. Just imagining in your mind, such x' must exist, because any point x' in $Ball_{\varepsilon}(x)$ and also it lies on the vector $x^* - x$, then it will have the strict smaller distance with x^* than x.

Based on the above imagination, I construct the x' like this. $(x_1^* - x_1, x_2^* - x_2, \ldots, x_k^* - x_k)$ forms the vector from x^* to x, and I divided the **norm** of this vector to standardize it.

We construct an $x' \in \mathbb{R}_+^K$ like this:

$$x' = (x_1 + \frac{x_1^* - x_1}{d(x^*, x)} \cdot \frac{\varepsilon}{2}, x_2 + \frac{x_2^* - x_2}{d(x^*, x)} \cdot \frac{\varepsilon}{2}, \dots, x_k + \frac{x_k^* - x_k}{d(x^*, x)} \cdot \frac{\varepsilon}{2})$$

d(a, b) is the Euclidean distance between points a and b.

Without loss of generality, we assume

$$\varepsilon < d(x^*, x)^1 \tag{1}$$

Our proof begins in two steps. **Step1: Prove** $x' \succ x$.

¹Because, any point $x' \in Ball_{\varepsilon}(x), x' \succ x$, also belongs to $Ball_{\varepsilon'}(x)$, where $\varepsilon' > d(x^*, x)$

Combining with the utility function, this requires us to prove $d(x^*, x') < d(x^*, x)$, let's write down the expression of $d^2(x^*, x')$:

$$d^{2}(x^{*}, x') = \sum_{i=1}^{k} (x_{i} + \frac{x_{i}^{*} - x_{i}}{d(x^{*}, x)} \cdot \frac{\varepsilon}{2} - x_{i}^{*})^{2}$$

$$= \sum_{i=1}^{k} (x_{i} - x_{i}^{*})^{2} + \sum_{i=1}^{k} (\frac{x_{i}^{*} - x_{i}}{d(x^{*}, x)} \cdot \frac{\varepsilon}{2})^{2} - \sum_{i=1}^{k} \frac{(x_{i} - x_{i}^{*})(x_{i} - x_{i}^{*})}{d(x^{*}, x)} \cdot \varepsilon$$

$$\to A = \sum_{i=1}^{k} (\frac{x_{i}^{*} - x_{i}}{d(x^{*}, x)} \cdot \frac{\varepsilon}{2})^{2} - \sum_{i=1}^{k} \frac{(x_{i} - x_{i}^{*})(x_{i} - x_{i}^{*})}{d(x^{*}, x)} \cdot \varepsilon$$

$$\to A = \frac{\varepsilon^{2}}{4} - d(x^{*}, x) \cdot \varepsilon < \frac{\varepsilon^{2}}{4} - \varepsilon^{2} < 0$$

This completes our proof for step 1.

Step2: Prove $x' \in Ball_{\varepsilon}(x)$

This proof is trivial. Writing down the distance of x' and x, we will get the result.