Example 1 (CES utility function). The constant elasticity of substitute utility function has form of,

$$
U(x)=\left(\sum_{i=1}^{n} x_{i}^{\rho}\right)^{\frac{1}{\rho}} .
$$

The constant elasticity is indeed: $\frac{1}{1-\rho}$, before we proceed to proof notice that

$$
M R S_{j i}=\frac{\frac{1}{\rho}\left(\sum_{i=1}^{n} x_{i}^{\rho}\right)^{\frac{1-\rho}{\rho}} \rho x_{j}^{\rho-1}}{\frac{1}{\rho}\left(\sum_{i=1}^{n} x_{i}^{\rho}\right)^{\frac{1-\rho}{\rho}} \rho x_{i}^{\rho-1}}=\left(\frac{x_{j}}{x_{i}}\right)^{\rho-1}
$$

Hence,

$$
\begin{aligned}
E_{i j} & =\frac{\partial \ln \left(\frac{x_{i}}{x_{j}}\right)}{\partial \ln \left(M R S_{j i}\right)} \\
& =\frac{\partial \ln \left(\frac{x_{i}}{x_{j}}\right)}{\partial \ln \left[\left(\frac{x_{i}}{x_{j}}\right)^{1-\rho}\right]} \\
& =\frac{1}{1-\rho} .
\end{aligned}
$$

Example 2 (CES production function). The CES production function is given by,

$$
f(x)=A\left(\sum_{i=1}^{n} \lambda_{i} x_{i}^{\rho}\right)^{\frac{k}{\rho}} .
$$

More often, we focus on $f(x)=\left(\sum_{i=1}^{n} a_{i} x_{i}^{\gamma}\right)^{\frac{1}{\gamma}}$ with $\sum_{i=1}^{n} a_{i}=1$ and this form has following three "transformations" according to different cases of γs.
(i) $\lim _{r \rightarrow 1}\left(\sum_{i=1}^{n} a_{i} x_{i}^{\gamma}\right)^{\frac{1}{\gamma}}=\sum_{i=1}^{n} a_{i} x_{i}$: this is obvious;
(ii) $\lim _{r \rightarrow 0}\left(\sum_{i=1}^{n} a_{i} x_{i}^{\gamma}\right)^{\frac{1}{\gamma}}=\prod_{i=1}^{n} x_{i}^{a_{i}}$:

Proof.

$$
\lim _{r \rightarrow 0}\left(\sum_{i=1}^{n} a_{i} x_{i}^{\gamma}\right)^{\frac{1}{\gamma}}=\lim _{r \rightarrow 0} e^{\frac{1}{\gamma} \ln \left(\sum_{i=1}^{n} a_{i} x_{i}^{\gamma}\right)}
$$

Notice that L'Hôpital's Rule implies,

$$
\begin{gathered}
\lim _{r \rightarrow 0} \frac{\ln \left(\sum_{i=1}^{n} a_{i} x_{i}^{\gamma}\right)}{\gamma} \rightarrow \\
e^{\sum_{i=1}^{n} a_{i} \ln \left(x_{i}\right)}=\prod_{i=1}^{n} x_{i}^{a_{i}} .
\end{gathered}
$$

Example 3 (Shadow price). Lagrange multipliers is interpreted as the change in the objective function by relaxing the constraint by one unit, in economics that change can be seen as a value or "shadow price". We shall prove this.

The formal idea is below: say, you are facing the following constrained optimization problem:

$$
\left\{\begin{array} { l l }
{ \operatorname { m a x } _ { (x , y) } } & { f (x , y) } \\
{ \text { s.t. } } & { g (x , y) = c }
\end{array} \longrightarrow \left\{\begin{array}{ll}
x^{*} & =x^{*}(c) \\
y^{*} & =y^{*}(c) \\
\lambda^{*} & =\lambda^{*}(c)
\end{array}\right.\right.
$$

We briefly sketch the process of Lagrangian method:
(i) Construct the Lagrangian equation: $\mathcal{L}(x, y, \lambda)=f(x, y)+\lambda(c-g(x, y))$
(ii) Take the derivative with regard to x, y, λ, then we get the first order condition:

$$
\begin{aligned}
& \frac{\partial \mathcal{L}\left(x^{*}, y^{*}, \lambda^{*}\right)}{\partial x}=\frac{\partial f\left(x^{*}, y^{*}\right)}{\partial x}-\lambda^{*} \frac{\partial g\left(x^{*}, y^{*}\right)}{\partial x}=0 \\
& \frac{\partial \mathcal{L}\left(x^{*}, y^{*}, \lambda^{*}\right)}{\partial y}=\frac{\partial f\left(x^{*}, y^{*}\right)}{\partial y}-\lambda^{*} \frac{\partial g\left(x^{*}, y^{*}\right)}{\partial y}=0 \\
& \frac{\partial \mathcal{L}\left(x^{*}, y^{*}, \lambda^{*}\right)}{\partial \lambda}=c-g\left(x^{*}, y^{*}\right)=0
\end{aligned}
$$

(iii) Solve this system equations and get the results.

Now, you may wonder if we increase c by one unit, how much would $f\left(x^{*}, y^{*}\right)$ increase? The answer is: λ^{*}, that's why Lagrange multipliers are called shadow prices, i.e., the change in the objective function by relaxing the constraint by one unit. Let's prove it.

Proof. Writing the value function as: $F(c)=f\left(x^{*}(c), y^{*}(c)\right)$, now take derivative with respect to c :

$$
\begin{aligned}
\frac{d F(c)}{d c} & =\frac{\partial f\left(x^{*}(c), y^{*}(c)\right)}{\partial x} \cdot \frac{d x^{*}(c)}{d c}+\frac{\partial f\left(x^{*}(c), y^{*}(c)\right)}{\partial y} \cdot \frac{d y^{*}(c)}{d c} \\
& =\underbrace{\lambda^{*}(c) \cdot \frac{\partial g\left(x^{*}, y^{*}\right)}{\partial x}}_{F O C} \cdot \frac{d x^{*}(c)}{d c}+\underbrace{\lambda^{*}(c) \cdot \frac{\partial g\left(x^{*}, y^{*}\right)}{\partial y}}_{F O C} \cdot \frac{d y^{*}(c)}{d c} \\
& =\lambda^{*}(c) \cdot(\underbrace{\left.\frac{\partial g\left(x^{*}, y^{*}\right)}{\partial x} \cdot \frac{d x^{*}(c)}{d c}+\frac{\partial g\left(x^{*}, y^{*}\right)}{\partial y} \cdot \frac{d y^{*}(c)}{d c}\right)}_{\text {Take differential with } c: g(x, y)=c \Longrightarrow 1} \\
& =\lambda^{*}(c)
\end{aligned}
$$

Analogize to the utility maximizing problem, the interpretation of Lagrange multiplier is: when you have one unit more wealth, then your total utility would increase by λ^{*}.

Example 4 (Binary relation as a subset of Cartesian product). Consider outcome set $X=\{a, b, c\}$, we can define a binary relation

$$
\succsim=\{(a, a),(b, b),(c, c),(a, b),(b, a),(a, c),(b, c)\} .
$$

Example 5 (Continuous preference with discontinuous utility function). A continuous preference can be represented by a discontinuous utility function. Consider $X=\mathbb{R}$ and \succsim is "more is better". Clearly \succsim is continuous, however it can be represented as

$$
U(x)= \begin{cases}x, & \text { if } x \leq 0 \\ x+1, & \text { if } x>0\end{cases}
$$

Example 6 (Implication of local-nonsatiation preference). Consider two bundles x^{j} and x^{k}. $x^{j}=\left(x_{1}^{j}, x_{2}^{j}, \ldots, x_{n}^{j}\right)$ and $x^{k}=\left(x_{1}^{k}, x_{2}^{k}, \ldots, x_{n}^{k}\right) \in \mathbb{R}_{+}^{n}$. Bundle x^{j} satisfies this: when facing price vector $p^{j}=\left(p_{1}^{j}, p_{2}^{j}, \ldots, p_{n}^{j}\right)$, the consumer chooses x^{j}. Bundle x^{k} is affordable under p^{j}, i.e., $p^{j} x^{k}<p^{j} x^{j}$.

Claim: If the decision maker's choices can be rationalized by a complete locally non-satiated preference relation, then it must be the case that $x^{j} \succ x^{k}$.

Proof. We will prove it by contradiction. Assume: $x^{k} \succsim x^{j}$ and consider

$$
\varepsilon=\frac{p^{j} x^{j}-p^{j} x^{k}}{\sum_{i=1}^{n} p_{i}^{j}}
$$

$$
\begin{aligned}
& \Longrightarrow \sum_{i=1}^{n} p_{i}^{j} y_{i}<\sum_{i=1}^{n} p_{i}^{j}\left(x_{i}^{k}+\varepsilon\right), \forall y \in B_{\varepsilon}\left(x_{k}\right) \\
& \Longrightarrow \sum_{i=1}^{n} p_{i}^{j} y_{i}<\sum_{i=1}^{n} p_{i}^{j} x_{i}^{k}+\varepsilon \sum_{i=1}^{n} p_{i}^{j} \\
& \Longrightarrow \sum_{i=1}^{n} p_{i}^{j} y_{i}<\sum_{i=1}^{n} p_{i}^{j} x_{i}^{k}+\frac{p^{j} x^{j}-p^{j} x^{k}}{\sum_{i=1}^{n} p_{i}^{j}} \sum_{i=1}^{n} p_{i}^{j} \\
& \Longrightarrow p^{j} y<p^{j} x^{j}
\end{aligned}
$$

This means that you find a ball around x^{k}, such that at price p^{j}, every $y \in B_{\varepsilon}\left(x^{k}\right)$ is affordable.

By non-satiation assumption, $\exists y^{\prime} \in B_{\varepsilon}\left(x^{k}\right)$, such that $y^{\prime} \succ x^{k} \succsim x^{j}$. This leads to the contradiction that \succsim rationalized choices, since at price p^{j} bundle x^{j} is optimal for decision maker.

Example 7 (Convex preference may not have concave utility representation). Let's consider the preference on \mathbb{R} such that $x \succsim y$ if $x \geq y$ or $y<0$. This preference is convex but does not have concave utility representation.

Proof. First we prove it's convex then we show it does not have concave utility function.
(i) The preference is convex: we want to show $\operatorname{AsGoodAs}(y)=\{z \mid z \succsim y\}$ for any y in \mathbb{R} is convex. y has the following two cases.
(i) $y \geq 0: \forall x, z \succsim y$ and $\alpha \in(0,1)$, we have $\alpha x+(1-\alpha) z \geq y$. This implies $\alpha x+(1-\alpha) z \succsim y \Longrightarrow(\alpha x+(1-\alpha) z) \in \operatorname{AsGoodAs}(y)$.
(ii) $y<0$. Then x, z have the following three cases.
(i) $x, z \geq 0: \alpha x+(1-\alpha) z \geq 0>y$. This implies $(\alpha x+(1-\alpha) z) \in$ $\operatorname{Asgood} A s(y)$
(ii) $x \geq 0$ and $z<0: \alpha x+(1-\alpha) z$ is either ≥ 0 or <0, both cases imply $\alpha x+(1-\alpha) z \in \operatorname{AsGoodAs}(y)$.
(iii) $x<0$ and $z<0: \alpha x+(1-\alpha) z \sim y$, therefore $\alpha x+(1-\alpha) z \in$ AsGoodAs(y).
(ii) The utility representation is not concave: $\{x<0\}$ is mapped into a flat line and $\{x \geq 0\}$ is mapped into an increasing function, therefore it can not be concave.

Example 8 (Monotonic preference does not imply non-giffen good). Consider the following utility function with two commodities:

$$
u(x)=\min \left\{u_{1}(x), u_{2}(x)\right\}, \text { where } u_{1}(x)=x_{1}+10, u_{2}(x)=2\left(x_{1}+x_{2}\right)
$$

Now consider the following case, consumer's income is $m=60, p_{1}=12$ and p_{2} changes from 9 to 4 . This graph shows that when price of good 2

Figure 1: Good 2 is Giffen good
decreases, however, consumer's demand for good 2 decreases as well! Meanwhile, consumer's preferences are monotonic!

Example 9 (Turtle traveling). Consider the following two sentences:
(i) The maximal distance a turtle can travel in 2 days is 7 km .
(ii) The minimal time it takes a turtle to travel 7 km is 2 days. under which conditions are these two sentences equivalent?
(i) For 1 implies 2: we need monotonicity of distance-day function. For example, consider the following distance-day function: a turtle can travel 7 km in 1 day but after 1 day it has to rest. Then, this distanceday function is not monotonic and it does not imply 2 .
(ii) For 2 implies 1: we need continuity of distance-day function. For example, consider a turtle can jump at $t=2$ from $d=7$ to $d=9$, then 1 fails.

Refer to figure ?? for descriptive result.

Figure 2: Non-duality: example

Example 10 (Nonsatiated but not monotonic preference). The preference represented by $u(x)=\sqrt{\sum\left(x_{k}-x_{k}^{*}\right)^{2}}$ is non-satiated but not monotonic.

Proof. we want to prove $\forall \varepsilon>0$, we can find an $x^{\prime} \in \operatorname{Ball}_{\varepsilon}(x)$, such that $x^{\prime} \succ x$.

Recall the definition of \succ, if I want to find an $x^{\prime} \in \operatorname{Ball}_{\varepsilon}(x)$, such that $x^{\prime} \succ x$, I need to show there is one point $x^{\prime} \in \operatorname{Ball}_{\varepsilon}(x)$, and $d\left(x, x^{*}\right)>$ $d\left(x^{\prime}, x^{*}\right)$. Just imagining in your mind, such x^{\prime} must exist, because any point x^{\prime} in $\operatorname{Ball}_{\varepsilon}(x)$ and also it lies on the vector $x^{*}-x$, then it will have the strict smaller distance with x^{*} than x.

Based on the above imagination, I construct the x^{\prime} like this. $\left(x_{1}^{*}-x_{1}, x_{2}^{*}-\right.$ $x_{2}, \ldots, x_{k}^{*}-x_{k}$) forms the vector from x^{*} to x, and I divided the norm of this vector to standardize it.

We construct an $x^{\prime} \in \mathbb{R}_{+}^{K}$ like this:

$$
x^{\prime}=\left(x_{1}+\frac{x_{1}^{*}-x_{1}}{d\left(x^{*}, x\right)} \cdot \frac{\varepsilon}{2}, x_{2}+\frac{x_{2}^{*}-x_{2}}{d\left(x^{*}, x\right)} \cdot \frac{\varepsilon}{2}, \ldots, x_{k}+\frac{x_{k}^{*}-x_{k}}{d\left(x^{*}, x\right)} \cdot \frac{\varepsilon}{2}\right)
$$

$d(a, b)$ is the Euclidean distance between points a and b.
Without loss of generality, we assume

$$
\begin{equation*}
\varepsilon<d\left(x^{*}, x\right)^{1} \tag{1}
\end{equation*}
$$

Our proof begins in two steps.
Step1: Prove $x^{\prime} \succ x$.

[^0]Combining with the utility function, this requires us to prove $d\left(x^{*}, x^{\prime}\right)<$ $d\left(x^{*}, x\right)$, let's write down the expression of $d^{2}\left(x^{*}, x^{\prime}\right)$:

$$
\begin{aligned}
d^{2}\left(x^{*}, x^{\prime}\right) & =\sum_{i=1}^{k}\left(x_{i}+\frac{x_{i}^{*}-x_{i}}{d\left(x^{*}, x\right)} \cdot \frac{\varepsilon}{2}-x_{i}^{*}\right)^{2} \\
& =\underbrace{\sum_{i=1}^{k}\left(x_{i}-x_{i}^{*}\right)^{2}}_{=d^{2}\left(x^{*}, x\right)}+\underbrace{\sum_{i=1}^{k}\left(\frac{x_{i}^{*}-x_{i}}{d\left(x^{*}, x\right)} \cdot \frac{\varepsilon}{2}\right)^{2}-\sum_{i=1}^{k} \frac{\left(x_{i}-x_{i}^{*}\right)\left(x_{i}-x_{i}^{*}\right)}{d\left(x^{*}, x\right)} \cdot \varepsilon}_{=A} \\
& \longrightarrow A=\sum_{i=1}^{k}\left(\frac{x_{i}^{*}-x_{i}}{d\left(x^{*}, x\right)} \cdot \frac{\varepsilon}{2}\right)^{2}-\sum_{i=1}^{k} \frac{\left(x_{i}-x_{i}^{*}\right)\left(x_{i}-x_{i}^{*}\right)}{d\left(x^{*}, x\right)} \cdot \varepsilon \\
& \longrightarrow A=\frac{\varepsilon^{2}}{4}-d\left(x^{*}, x\right) \cdot \varepsilon<\frac{\varepsilon^{2}}{4}-\varepsilon^{2}<0
\end{aligned}
$$

This completes our proof for step 1.
Step2: Prove $x^{\prime} \in \operatorname{Ball}_{\varepsilon}(x)$
This proof is trivial. Writing down the distance of x^{\prime} and x, we will get the result.

[^0]: ${ }^{1}$ Because, any point $x^{\prime} \in \operatorname{Ball}(x), x^{\prime} \succ x$, also belongs to $\operatorname{Ball}_{\varepsilon^{\prime}}(x)$, where $\varepsilon^{\prime}>d\left(x^{*}, x\right)$

