Example 1 (Funny property). If $\bigcup_{i=1}^{\infty} A_i = M$ (universal set), then each $A_i \in \mathcal{A}$.

Proof. Say $B_1, \ldots \notin \mathcal{A}$, whereas $C_1, \cdots \in \mathcal{A}$, then $\bigcup_{i=1}^{\infty} B_i = M \setminus (\bigcup_{i=1}^{\infty} C_i) \in \mathcal{A}$. Contradiction yields.

Example 2 (Non-uniquely of σ -algebra). Notice that for a given set M, the σ -algebra on M is not unique. $\mathcal{P}(M)$ and $\{M, \emptyset\}$ are σ -algebras on M.

Example 3 (Half-interval in 2-dimensional space). This example aims to demonstrate half-interval in a 2-dimensional space. Consider

$$]0,1]: \{ x \in \mathbb{R}^2 : 0 < x \le 1 \}.$$

Figure 1: 2-dimension half interval

Example 4. Besides]a, b], there are also other intervals considered to be Borel set.

(i) \mathbb{R} is a Borel set.

Proof. It's clear that $]-\infty, n]$ for n = 1, 2, ... is Borel set. Then, from the fact that \mathcal{B} is a σ -algebra on \mathbb{R} , we can conclude:

$$\mathbb{R} = \bigcup_{n=1}^{\infty}] - \infty, n] \in \mathcal{B}.$$

(ii) $\{a\}$ for all $a \in \mathbb{R}$ is a Borel set.

Proof. Let
$$A_n =]a - \frac{1}{n}, a] \in \mathcal{B}$$
, then $\bigcup_{n=1}^{\infty} A_n = \{a\} \in \mathcal{B}$.

(iii) [a, b] for all $-\infty < a < b < \infty$ is a Borel set.

Proof. $(a, b], \{a\}$ are Borel sets, therefore $[a, b] = (a, b] \cup \{a\}$ is a Borel set.

Example 5 (A π -system needs not to be a σ -algebra.). Let $M = \{1, 2\}$. Clearly, $\{\emptyset, \{1\}\}$ is a π -system, but it fails to be a σ -algebra.

Example 6 (max{U, V} can be a simple function). If $U, V \in S_+$, then max{U, V} and min{U, V} $\in S_+$.

Proof. Intuitively thinking, $\max\{U, V\}$ should admit finite value and is a nonnegative function as well.

Now we give a formal proof. First, assume $U(x) = \sum_{i=1}^{n} \alpha_i 1_{A_i}$, $V(x) = \sum_{j=1}^{m} \beta_i 1_{B_i}$, where A_i are disjoint and $\bigcup_{i=1}^{n} A_i = M$, same for B_j . Notice that:

$$U(x) = \sum_{i=1}^{n} \alpha_i 1_{A_i}$$

= $\sum_{i=1}^{n} \alpha_i 1_{\bigcup_{j=1}^{m} (A_i \cap B_j)}$
= $\sum_{i=1}^{n} \alpha_i \sum_{j=1}^{m} 1_{A_i \cap B_j}$
= $\sum_{i,j} \alpha_i 1_{A_i \cap B_j}.$

Same argument,

$$V(x) = \sum_{i,j} \beta_j \mathbf{1}_{A_i \cap B_j}$$

Therefore,

$$\max\{f,g\} = \sum_{i,j} \max\{\alpha_i, \beta_j\} \mathbb{1}_{A_i \cap B_j} \in \mathcal{S}_+.$$

Г		п
		1
		1
_		